Redispatch3.0

Key Challenges for a Redispatch 3.0

- Grid operator are expected to face an increased number of controllable resources < 100 kW, such as photovoltaic, electric vehicle, storage systems and heat pumps.
- Controllable resources < 100 kW are not</p> part of Redispatch yet
- Operator of these resources do not forward schedules and their behaviours is not easy to predict
- Interaction between load & feed-in in the distribution grid

Redispatch		1.0	2.0	3.0
	Transmission System Operator	\checkmark	\checkmark	\checkmark
	Distribution System Operator		\checkmark	\checkmark
	Power plants > 10 MW	\checkmark	\checkmark	\checkmark
	Power plants 100 kW - 10 MW		\checkmark	\checkmark
	All renewable energies > 100 kW		\checkmark	\checkmark
	All renewable energies < 100 kW			\checkmark
	Prosumer, batteries, heat pumps, electric vehicle, variable loads etc.			\checkmark

Solutions of a Redispatch 3.0

Overall architecture that covers:

- AI based forecast of controllable resources < 100 kW
- Preventive and curative congestion management
- Aggregation of controllable resources (< 100 kW)
- Smart meter gateways and grid automation
- Incentives and digital grid connection points
- Coordination of DSOs, TSOs, controllable resources and aggregators
- Integration of existing Redispatch 2.0 processes

Overall architecture from a DSO perspective

How to Integrate the Flexibility of Controllable Resources < 100 kW into Redispatch?

Aggregation of small flexibilities and information exchange:

- DSOs form aggregation objects of controllable resources < 100 kW (Based on sensitivities, resource types, limitations etc.)
- DSOs determine flexibility of the aggregation objects and forward these information to the upstream grid operators

along with possible operation areas

Redispatch demand:

- Grid operators can demand downstream grid operators for congestion management
- Coordination of DSOs, TSOs, controllable resources and aggregators
- Integration of existing Redispatch 2.0 processes

How to Enable Flexibility of Controllable Resources < 100 kW for Mitigating Congestions?

Grid operator, customer and aggregator perspective:

- DSOs are aware of grid restriction and aim for flexibility in case of congestions
- Aggregator/customer may provide flexibility to the market
- Coordination function to adjust different control requests

Control approach for controllable resources < 100 kW:

- Digital grid connection point (i.e. adjusting maximum power to inject/draw)
- Metering operator systems and SMGW can enable grid automation

Who is Involved in the Research Project "Redispatch 3.0"?

(CLS)

Bundesministerium für Wirtschaft und Klimaschutz

Contact:

Carsten Krüger, Marcel Otte, Stefanie Holly, Dr. Saskia Rathjen, Arlena Wellßow & Prof. Dr. Sebastian Lehnhoff OFFIS, Oldenburg, Germany, [firstname].[lastname]@offis.de

www.redispatch3.eu Redispatch3.0